Concurrent Session G

Research Updates on Colorectal Cancer Risk

American Cancer Society ROUNDTABLE

9:55 AM to 11:10 AM

Armchair Conversation: Barriers and Solutions to Reaching American Indian and Alaska Native Communities for Colorectal Cancer Screening

Moderator: Michael Sapienza

Caroline Um PhD, MPH, RD

Colorectal Cancer and the Microbiome

Christopher Lieu, MD Associate Professor and Associate Director for Clinical Research University of Colorado

COLORECTAL CANCER AND THE MICROBIOME

Christopher Lieu, MD Co-Director, GI Medical Oncology Associate Director for Clinical Research University of Colorado

Objectives: What do we know? What do we not know?

- What is the gut microbiome?
- Factors that impact the gut microbiome
- What has been discovered about the gut microbiome and colorectal cancer?
- Future Directions

The Gut Microbiome

Christopher Lieu, MD, University of Colorado

What is the gut microbiome?

- A biome is a distinct ecosystem characterized by its environment and its inhabitants
- Your gut inside your intestines is populated by trillions of microscopic organisms
- These microorganisms include over a thousand species of bacteria, as well as viruses, fungi and parasites

https://my.clevelandclinic.org/health/body/25201-gut-microbiome

Gut microbiome

What is the gut microbiome?

- Your gut microbiome is unique to you
- Infants inherit their first gut microbes during vaginal delivery or breastfeeding
- Later, your diet and other environmental exposures introduce new microbes to your biome

What does the microbiome do?

https://omedhealth.com/insights-hub/what-is-the-gut-microbiome/

What Factors Impact the Gut Microbiome?

Gut microbiome. Cresci, et al. Adult short bowel syndrome. 2018.

Torres Maravilla, et al. Role of gut microbiota and probiotics in colorectal cancer. Microorganisms. 2021

Gut Microbiome Varies with Age

Ottman et al. Front Cell Infect Microbiol 2012.

Gut Microbiome Varies with Ethnicity

Life-course exposures with potential effects on CRC development

Akimoto et al. Nat Rev Clin Oncol 2020.

The gut microbiome is unique to all individuals

The gut microbiome helps with digestion, protects against other bacteria and illnesses, and helps to shape and regulate the immune system

Dysbiosis has been linked to many disorders including colorectal cancer

Gut microbiome varies by age and ethnicity, and alterations to the gut microbiome start as early as birth!

The Gut Microbiome and Colorectal Cancer

Christopher Lieu, MD, University of Colorado

CRC: The potential impact of the microbiome

Antibiotic use and Colon Cancer Risk

- Matched case-control study of incident CRC cases diagnosed in the UK between 1989 & 2012 and up to 5 unaffected healthy patients
- ~29,000 CRC cases vs. ~137,000 controls
- Risk of colon cancer <u>increased</u> after antibiotic use in dose-dependent fashion, especially penicillins
- Prolonged antibiotic use appeared <u>protective</u> against rectal cancer
- Antibiotic-cancer association occurred after antibiotic exposure > 10 yrs prior to cancer diagnosis

Zhang J et al: Gut. 2019

Factors associated with the microbiome and CRC a confusing landscape!

Factor	Outcome	HR
Birth by cesarean delivery Cao et al. JAMA Netw Open 2023	Females born by cesarean delivery had higher odds of EO-CRC	1.62 (1.01-2.60)
Women with a BMI > 30 Liu et al. JAMA Onc 2019	Females with a BMI > 30 had higher odds of EO-CRC	1.88 (1.07-3.30)
Obesity in men in childhood Jensen et al: Int J of Obesity, 2018	Higher weights in childhood that persist had <u>higher</u> odds of EO- CRC	2.62 (1.62-4.25)
BMI: Obesity in veterans Low et al. Gastroent 2020	Obesity associated with <u>lower</u> odds of EO-CRC	0.69 (0.55-0.86)
Antibiotic use and colon cancer Zhang J et al: Gut. 2019	Prolonged antibiotic use resulted in <u>higher</u> odds of colon cancer	1.17 (1.10-1.23)
Antibiotic use and rectal cancer Zhang J et al: Gut. 2019	Prolonged antibiotic use resulted in lower odds of rectal cancer	0.85 (0.79-0.93)

Gut bacteria *shift* from polyp formation to cancer progression

Torres Maravilla, et al. Role of gut microbiota and probiotics in colorectal cancer. Microorganisms. 2021

Bacteria Often Co-Occur in the Primary Lesion and the Liver Metastasis

What Do These Bacteria Do to Promote Cancer Growth?

Effect of the gut microbiome on the colon epithelial cell genome and epigenome

Prevent and conquer cancer. **Together**.

Rebersek BMC Cancer 2021. Allen and Sears. Genome Med 2019.

Fusobacterium nucleatum

Baylor College of Medicine

- Associated with gingival plaque
- Seen in CRC associated with diets lacking whole grains and dietary fiber
- High levels seen in 7%, low or high levels seen in 15% of CRC
 - mostly right-sided, MSS (*n* = 598, mean age 67.2, SD 8.4)
- Associated with a lower density of immune cells

Metronidazole slows tumor growth in *Fusobacterium*-colonized mouse models

Is Fusobacterium. nuc. present in adenomas?

Figure 9. A "two-hit" model for CRC progression stimulated by F. nucleatum.

In non-cancerous cells (top panel), there is low level of Annexin A1 (ANXA1) and weak binding of FadA to E-cadherin (CDH1). In cancerous cells (bottom panel), Annexin A1 level increases, FadA binding enhances, FadA-E-cadherin-Annexin A1-\beta-catenin complex forms, β-catenin is activated, resulting in acceleration of cancer progression. CM, cell membrane.

Prevent and conquer cancer. Together.

Rubinstein et al. EMBO Rep 2019, Kostic et al. Cell Host Microbe 2013.

Final Results (N = 63)

-48%

Sp

Ralstonia

۲

- Others were seen significantly more commonly in average-onset CRC (p < 0.05):
 - Pseudomonas luteola
 - Ralstonia sp.
 - Moraxella osloensis
 - Clostridium perfringens
 - Escherichia coli
 - Leptotrichia hofstadii
 - Mycosphaerella sp.
 - Neodevriesia modesta
 - Penicillium sp.
 - Leptosphaeria sp.

0% -10% -11% 11% -11% -11% -11% -20% -11% -11% -22% -30% -30% -40% -50% -44% -60% scherichia coli eptosphaeria ^Dseudomonas Cladosporium sp. Neodevriesia Moraxella oerfringens osloensis Leptotrichi Penicillium sp cosphaerell ⁻usobacteriu nofstadi Clostridiu nucleatun nodesta luteola SD LOCRC EOCRC Weinberg, et al. / Clin Oncol 38, no. 4 suppl (February 01, 2020) 241-241.

What we know:

We now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC

Gut bacteria shift from polyp formation to cancer development

Certain bacteria (*fusobacterium*) have been linked to colorectal cancer development

We also know that these microbes induce tumors in various mouse models

What we don't know:

We know little about how the microbiome impacts colon epithelial cells (CECs) directly

AND

How these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth

The future of the gut microbiome and colorectal cancer

Christopher Lieu, MD, University of Colorado

Potential Clinical Applications: *Targeting or Using the Gut Microbiome*

Wong, et al. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature. 2019.

Gut Microbiome Modulates Response to Anti-PD-1 **Immunotherapy in Patients with Melanoma**

Positive effects of microbiota and probiotics in CRC

Ţ

Prevent and conquer cancer. Together.

Torres Maravilla, et al. Role of gut microbiota and probiotics in colorectal cancer. Microorganisms. 2021

Fecal Microbiota Transplant Capsules

- Guideline approved for recurrent/refractory *C. difficile* infections (2013)
- Fecal Microbiota Transplant can improve immunotherapy-induced colitis
- Phase I study of patients with melanoma receiving immunotherapy and a fecal microbiota transplant (n = 40 patients)
 - 65% of the patients who retained the donors' fecal microbiota had clinical responses to the combination treatment

Ţ

Routy et al. Nature 2023.

Need to implement more standardized analysis strategies

Collate data from multiple studies and institutions (a ton of data!)

This is an area where machine learning and AI may be helpful!

Utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care

Cancer Center

NCI-DESIGNATED COMPREHENSIVE CANCER CENTER Prevent and conquer cancer. Together.

THANK YOU

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity

Diet, Nutrition, & Colorectal Cancer Research in the ACS Cancer Prevention Studies

Caroline Um, PhD, MPH, RD Principal Scientist, Epidemiology Research American Cancer Society

Diet, Nutrition, & Colorectal Cancer Research in the ACS Cancer Prevention Studies

Caroline Um, PhD, MPH, RD

National Colorectal Cancer Roundtable Annual Meeting November 15-17, 2023

THE CANCER PREVENTION STUDIES (CPS)

For nearly 70 years, the American Cancer Society has conducted some of the world's largest prospective epidemiologic cohort studies to understand risk factors for cancer risk as well as progression, quality of life, and survival after a cancer diagnosis.

	Hammond-Horn	CPS-I	CPS-II*	CPS-3*
Years	1952-1955	1959-1972	1982-2022	2006-present
Participants	188,000	1,000,000	1,200,000	304,000
Volunteers	22,000	68,000	77,000	25,000
With blood (or DNA)	n/a	n/a	40,000 (70,000)	297,000

* Tumor tissue for selected cancer types collected

DIET & NUTRITION RESEARCH FROM CPS

DIET, NUTRITION, PHYSICAL ACTIVITY AND COLORECTAL CANCER

Chao A, et al. Amount, type, and timing of recreational physical activity in relation to colon and rectal cancer in older adults: the Cancer Prevention Study II Nutrition Cohort. *Cancer Epid Biom Prev* 2004.

McCullough ML, et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. *J Natl Cancer Inst* 2019.

McCullough ML, et al. Prospective study of whole grains, fruits, vegetables and colon cancer risk. *Cancer Causes Control 2003*.

TIMITED

Um CY, et al. Association between grains, gluten, and risk of colorectal cancer in the Cancer Prevention Study II Nutriton Cohort. Eur J Nutr 2003.

LU	R	ECTAL CANCER			
		DECREASES RISK	INCRE	ASES RISK	
		Physical activity ^{1,2}	Processed Alcoholic d Body fatne Adult attair	Mortality fro Studied Coh	al. Overweight, Obesity, and m Cancer in a Prospectively ort of U.S. Adults. <i>N Engl J Med</i>
		Wholegrains		2003.	
		Foods containing dietary fibre ⁷ Dairy products ⁸ Calcium supplements ⁹	Red meat ¹⁰	•	l. Meat Consumption and Risk of ancer. <i>JAMA</i> 2005.
		Foods containing vitamin C ¹¹ Fish Vitamin D ¹² Multivitamin supplements ¹³	Low intakes of non- starchy vegetables ¹⁴ Low intakes of fruits ¹⁴ Foods containing haem iron ¹⁵		
		Cereals (grains) and their prod poultry; shellfish and other sea cholesterol; dietary n-3 fatty a	afood; fatty a	cid composition;	

cholesterol; dietary n-3 fatty acid from fish; legumes; garlic; non-dairy sources of calcium; foods containing added sugars; sugar (sucrose); coffee; tea; caffeine; carbohydrate; total fat; starch; glycaemic load; glycaemic index; folate; vitamin A; vitamin B6; vitamin E; selenium; low fat; methionine; beta-carotene; alpha-carotene; lycopene; retinol; energy intake; meal frequency; dietary pattern **CPS-II**

Circulating vitamin D and colorectal cancer risk: Pooled analysis of 17 prospective cohorts

McCullough ML, et al. Circulating vitamin D and colorectal cancer risk: A pooled analysis of 17 prospective cohorts. *J Natl Cancer Inst* 2019. **CPS-II**

Sugar sweetened beverage consumption and risk of cancer mortality among adults in CPS-II (1982-2017)

Cancer site/type Kidney NHL Gall bladder Bladder Colorectal Stomach Liver Larynx/oral/pharynx Leukemia Pancreas Multiple myeloma Brain Lung Esophageal Melanoma All cancers BMI-related cancers Non-smoking related 0.25 0.75 0.50 1.5 1.0 2.25 3.0 HR (95% CI)

Never smokers

All

McCullough ML, et al. Sugar- and Artificially-Sweetened Beverages and Cancer Mortality in a Large U.S. Prospective Cohort. *Cancer Epid Biom Prev* 2022.

Diet and Activity Guidelines American Cancer to Reduce Cancer Risk Society

Staying at a healthy weight, being physically active throughout life, following a healthy eating pattern, and avoiding or limiting alcohol may greatly reduce your risk of developing or dying from cancer.

The American Cancer Society Diet and Physical Activity Guidelines for Cancer Prevention provide recommendations for weight control, physical activity, diet, and alcohol consumption to reduce cancer risk.

The American Cancer Society recommends the following:

BE PHYSICALLY ACTIVE.

ADULTS should get 150-300 minutes moderate-intensity activity/week or 75-150 Minutes vigorous-intensity activity/week a combination of the two through the week

EXERCISE

 Sitting around Lying down

CHILDREN AND TEENS should get at least 1 hour of moderate- or vigorous-intensity activity each day.

MORE FRUITS AND VEGGIES ... LESS JUNK

Red meats such as beef.

processed meats such

as bacon, sausage, deli

foods and refined grain

pork, and lamb and

meats, and hot dogs

beverages

products

- · Foods high in vitamins, minerals, and other nutrients in amounts that help you get to and stay at a healthy body weight
- · A colorful variety of Sugar-sweetened vegetables - dark green, red, and orange Highly processed
- Fiber-rich beans and peas · A colorful variety of
- whole fruits Whole grains, like
- whole wheat bread and brown rice

- If you do choose to drink alcohol, women should have no more than one drink per day and men should have no more than two drinks per day.
- A drink is 12 ounces of regular beer, 5 ounces of wine, or 1.5 ounces of 80-proof distilled spirits.

Many environments - where people live, learn, work, shop and play are not supportive of making healthy choices.

The American Cancer Society recommends that public, private, and community organizations work together to increase access to affordable, healthy foods and provide safe, enjoyable and accessible opportunities for physical activity.

YOU CAN MAKE YOUR COMMUNITY HEALTHIER BY:

· Asking for healthier meal and snack choices at school or work

 Speaking up at city council and other community meetings about the need for sidewalks, bike lanes, parks, and playgrounds to help make easier to walk, bike, and enjoy a variety of physical activities · Supporting stores and restaurants that sell or serve healthy options

EVOLUTION OF DIETARY ASSESSMENT

		HCK (, 01	EVE	RY LIN	E			
FOODS AND AMOUNTS	AVERAGE L	JSE LAS	T YEA	R					
MEAT AND FISH (medium serving)	Never or less than once/month		Once a week	Der	5-6	day	per day	4-5 per day	6+ per day
Beef: roast, steak, mince, stew or casserole									
Beefburgers	- destre								
Pork: roast, chops, stew or slices									
Lamb: roast, chops or stew									
Chicken or other poultry eg. turkey									
Bacon									
Ham									
Corned beef, Sparn, luncheon meats									-
Sausages									

- Lifestyle, environmental, & social factors
- Host genetics
- Oral and gut microbiomes
- Host and fecal metabolomes

Baseline Cohort: 1.2 million followed for mortality

Nutrition Cohort: 184,000 followed for cancer incidence & mortality

Enrollment

Follow-up

Racially/ethnically diverse participants

VOCES OF BLACK WOMEN

Enrolling Participant Groups:

Cancer-free cohort arm: (*Pilot launched Oct 2023*)

- 85,000 women between ages 25-55 years
- No cancer history (except basal or squamous skin cancer)

Survivor cohort arm: (*Pilot launching Fall 2024*)

- 15,000 women previously diagnosed with breast, endometrial, or colon cancer
 - 95% of excess cancer deaths for Black women attributed to these 3 cancers
- Age <65 years at diagnosis

★ 2023 Pilot Sites: Atlanta, GA Hampton Roads, VA

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity

Updates in Genetics and Family History

Swati Patel, MD, MS Associate Professor and Director, Gastrointestinal Hereditary Cancer Program University of Colorado Anschutz Medical Center

Updates in Genetics & Family History

Swati G. Patel, MD MS

Associate Professor of Medicine Division of Gastroenterology & Hepatology Director, Gastrointestinal Cancer Risk and Prevention Center University of Colorado Anschutz Medical Center Rocky Mountain Regional Veterans Affairs Medical Center <u>Swati.Patel@cuanschutz.edu</u>

🔰 @swatigp

Disclosures

Olympus America (research support)

(NCCN Colorectal Cancer Screening Panel) (US-MTSF on Colorectal Cancer)

Potential Impact of Family History–Based Screening Guidelines on the Detection of Early-Onset Colorectal Cancer

Samir Gupta, MD, MDCS, AGAF ⁽¹⁾^{1,2,3}; Balambal Bharti, MBBS, MPH, PhD^{2,3}; Dennis J. Ahnen, MD^{4,5}; Daniel D. Buchanan, PhD^{6,7,8}; Iona C. Cheng, PhD, MPH⁹; Michelle Cotterchio, PhD¹⁰; Jane C. Figueiredo, PhD ⁽¹⁾; Steven J. Gallinger, MD, MSc¹²; Robert W. Haile, DrPH, MPH¹¹; Mark A. Jenkins, PhD^{7,13}; Noralane M. Lindor, MD¹⁴; Finlay A. Macrae, MD, AGAF¹⁵; Loïc Le Marchand, MD, PhD¹⁶; Polly A. Newcomb, PhD, MPH¹⁷; Stephen N. Thibodeau, PhD¹⁸; Aung Ko Win, MBBS, MPH, PhD^{7,13}; and Maria Elena Martinez, PhD ⁽¹⁾^{3,19}

BACKGROUND: Initiating for the prevention and de limited. The authors asses The authors conducted a (772 individuals) incident ity of family history-based

I wish we had more time...

the American College of Radiology in 2008 for early screening, an screening initiation if these criteria had been applied. **RESULTS:** Fan, 25% of cases (614 of 2473 cases) and 10% of controls (74 of 772 coi ing EOCRC cases aged 40 to 49 years. Among 614 individuals me screening initiation at an age younger than the observed age of 4 met family history-based early screening criteria, and nearly all (or possibly even prevented) if earlier screening had been implem are needed to improve the detection and prevention of EOCRC fc *Cancer* 2020;126:3013-3020. © 2020 American Cancer Society.

KEYWORDS: case-control study, family history, guidelines, sensitiv

Health Record Encourage Referrals for Genetic Counseling and Testing Among Patients at High Risk for Hereditary Cancer Syndromes?

Kristin K. Zorn, MD¹; Melinda E. Simonson, ScM¹; Jennifer L. Faulkner, MS¹; Cyndee L. Carr, BS¹; Joshua Acuna, MPH¹; Tiffany L. Hall, RN¹; John F. Jenkins, MBA¹; Karen L. Drummond, PhD¹; and Geoffrey M. Curran, PhD¹

Updates in Genetics & Family History

Swati G. Patel, MD MS

Associate Professor of Medicine Division of Gastroenterology & Hepatology Director, Gastrointestinal Cancer Risk and Prevention Center University of Colorado Anschutz Medical Center Rocky Mountain Regional Veterans Affairs Medical Center <u>Swati.Patel@cuanschutz.edu</u>

🔰 @swatigp

Updates in Genetics & Family History

Swati G. Patel, MD MS

Associate Professor of Medicine Division of Gastroenterology & Hepatology Director, Gastrointestinal Cancer Risk and Prevention Center University of Colorado Anschutz Medical Center Rocky Mountain Regional Veterans Affairs Medical Center <u>Swati.Patel@cuanschutz.edu</u>

🔰 @swatigp

Gastroenterology & Hepatology

			Males Females		
Prostate	217,730	28%	Breast 2	207,090	28%
Lung & bronchus	116,750	15%	Lung & bronchus 1	05,770	14%
Colon & rectum	72,090	9%	Colon & rectum	70,480	10%
Urinary bladder	52,760	7%	Uterine corpus	43,470	6%
Melanoma of the skin	38,870	5%	Thyroid	33,930	5%
Non-Hodgkin lymphoma	35,380	4%	Non-Hodgkin lymphoma	30,160	4%
Kidney & renal pelvis	35,370	4%	Melanoma of the skin	29,260	4%
Oral cavity & pharynx	25,420	3%	Kidney&renal pelvis	22,870	3%
Leukemia	24,690	3%	Ovary	21,880	3%
Pancreas	21,370	3%	Pancreas	21,770	3%
All sites	789,620	100%	All sites 7	39,940	100%
(7,215)(7,525)(7,7)	103,020	100%			100 %
0.015 (7.07 (7.1	105,020	100%	Males Females		100%
0.015 (7.07 (7.1	86,220	29%	Males Females	71,080	
stimated Deaths			Males Females		26% 15%
stimated Deaths Lung & bronchus	86,220	29%	Males Females Lung & bronchus Breast	71,080	26%
stimated Deaths Lung & bronchus Prostate	86,220 32,050	29% 11%	Males Females Lung & bronchus Breast Colon & rectum	71,080 39,840	26% 15% 9%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas	86,220 32,050 26,580	29% 11% 9%	Males Females Lung & bronchus Breast Colon & rectum Pancreas	71,080 39,840 24,790	26% 15%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas	86,220 32,050 26,580 18,770	29% 11% 9% 6%	Males Females Lung & bronchus Breast Colon & rectum Pancreas	71,080 39,840 24,790 18,030	26% 15% 9% 7%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas iver & intrahepatic bile duct	86,220 32,050 26,580 18,770 12,720	29% 11% 9% 6% 4%	Males Females Lung & bronchus Breast Colon & rectum Pancreas Ovary	71,080 39,840 24,790 18,030 13,850	26% 15% 9% 7% 5%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas iver & intrahepatic bile duct Leukemia	86,220 32,050 26,580 18,770 12,720 12,660	29% 11% 9% 6% 4% 4%	Males Females Lung & bronchus Breast Colon & rectum Pancreas Ovary Non-Hodgkin lymphoma	71,080 39,840 24,790 18,030 13,850 9,500	26% 15% 9% 7% 5% 4% 3%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas liver & intrahepatic bile duct Leukemia Esophagus	86,220 32,050 26,580 18,770 12,720 12,660 11,650	29% 11% 9% 6% 4% 4% 4%	Males Females Lung & bronchus Breast Colon & rectum Pancreas Ovary Non-Hodgkin lymphoma Leukemia	71,080 39,840 24,790 18,030 13,850 9,500 9,180	26% 15% 9% 7% 5% 4%
stimated Deaths Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct Leukemia Esophagus Non-Hodgkin lymphoma	86,220 32,050 26,580 18,770 12,720 12,660 11,650 10,710	29% 11% 9% 6% 4% 4% 4% 4%	Males Females Lung & bronchus Breast Colon & rectum Pancreas Ovary Non-Hodgkin lymphoma Leukemia Uterine corpus	71,080 39,840 24,790 18,030 13,850 9,500 9,180 7,950	26% 15% 9% 7% 5% 4% 3% 3%

Opportunities for Intervention

Schmeler et al. N Engl J Med 2006; 354:261-269.

Opportunities for Intervention

University of Colorado Anschutz Medical Campus

University of Colorado Anschutz Medical Campus

Opportunities for Intervention

Kloor et al. Clin Cancer Res 2020;26(17):4503-10. Vilar-Sanchez et al. NCT05078866. Bansal & Vilar-Sanchez et al. NCT05419011.

- Cumulative risk of metachronous CRC at 10, 20, 30 years is 16%, 41%, 62%, respectively
- Extensive colectomy vs segmental
 - Extensive: 0/50 metachronous tumors
 - Segmental: 74/322 (22%) metachronous tumors

Lynch Syndrome is Grossly Under-Recognized

Only ~1.2% (10K/830K) Lynch mutation carriers in the US are aware of their diagnosis

Lynch Syndrome Diagnosis: Tumor Screening

American Society of

Clinical Oncology

Lynch Syndrome Diagnosis: Universal Tumor Testing

"The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group found <u>sufficient</u> <u>evidence to recommend offering genetic testing</u> for Lynch syndrome to individuals with newly diagnosed colorectal cancer (CRC) to reduce morbidity and mortality in <u>relatives</u>."

Lynch Syndrome Diagnosis: Tumor Screening

Low Referral Rate for Genetic Testing in Racially and Ethnically Diverse Patients Despite Universal Colorectal Cancer Screening

Charles Muller,* Sang Mee Lee,* William Barge,[‡] Shazia M. Siddique,[§] Shivali Berera,^{||} Gina Wideroff,^{||} Rashmi Tondon,[§] Jeremy Chang,* Meaghan Peterson,* Jessica Stoll,* Bryson W. Katona,[§] Daniel A. Sussman,^{||} Joshua Melson,[‡] and Sonia S. Kupfer*

Overall, 92% of colorectal tumors were analyzed for mismatch repair deficiency without significant differences among races/ethnicities. However, minority patients were significantly less likely to be referred for genetic evaluation (21.2% for NHW patients vs 16.9% for African American patients and 10.9% for Hispanic patients; P = .02). Rates of genetic testing were also lower among minority patients (10.7% for NHW patients vs 6.0% for AA patients and 3.1% for Hispanic patients; P < .01). On multivariate analysis, African American race, older age, and medical center were independently associated with lack of referral for genetic evaluation and genetic testing.

Since 2017: All CRC dx < 50 get offered MGPT

Pearlman et al. JAMA Oncology 2017. 3(4):464-71. NCCN Genetic/Familial High-Risk Assessment: Colorectal 2017.

Since 2022:

Consider germline MGPT evaluation for LS and other hereditary cancer syndromes for <u>all individuals with</u> <u>CRC</u> aged ≥50 years at diagnosis (2B)

Challenges that lie ahead

Cost & care delivery burden

Accepted: 5 September 2023

DOI: 10.1111/1471-0528.17675

RESEARCH ARTICLE

BJOG An International Journal of Obstetrics and Gynaecology

Patient decision aids in mainstreaming genetic testing for women with ovarian cancer: A prospective cohort study

> Ann Surg Oncol (2023) 30:5990-5996 https://doi.org/10.1245/s10434-023-13888-4

Annals of SURGICAL ONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

ORIGINAL ARTICLE – BREAST ONCOLOGY

A Randomized Trial Comparing the Effectiveness of Pre-test Genetic Counseling Using an Artificial Intelligence Automated Chatbot and Traditional In-person Genetic Counseling in Women Newly Diagnosed with Breast Cancer

Challenges that lie ahead

• Cost & care delivery burden

• Expertise needed

RESULT: NO PATHOGENIC VARIANTS IDENTIFIED

Variant(s) of Uncertain Significance identified.

GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION
BRIP1	c.3302C>T (p.Pro1101Leu)	heterozygous	Uncertain Significance
DICER1	c.278G>A (p.Gly93Glu)	heterozygous	Uncertain Significance
GATA2	c.460A>G (p.Ser154Gly)	heterozygous	Uncertain Significance
MSH3	c.3382A>G (p.Met1128Val)	heterozygous	Uncertain Significance
RECQL4	c.2836C>T (p.Arg946Cys)	heterozygous	Uncertain Significance

About this test

This diagnostic test evaluates 84 gene(s) for variants (genetic changes) that are associated with genetic disorders. Diagnostic genetic testing, when combined with family history and other medical results, may provide information to clarify individual risk, support a clinical diagnosis, and assist with the development of a personalized treatment and management strategy.

Challenges that lie ahead

Cost & care delivery burden

• Expertise needed

• May push disparities downstream

Final Thoughts

- Exciting developments in diet, lifestyle and medications
- Universal germline testing has the potential to significantly improve diagnosis of hereditary syndromes
- Operationalizing this for the 3rd most commonly diagnosed cancer will require
 - Adapting to new models of genetic counseling & testing
 - Training a workforce
 - Attention to health equity

Swati G. Patel, MD MS
Swati.Patel@cuanschutz.edu
Swati.Patel@cuanschutz.edu
Swati@cuanschutz.edu

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity