Session Ten

Panel Early-Age Onset Colorectal Cancer: What's Experienced, What's Known, and What's Next?

American SP Cancer Society

11:15 AM to 12:30 PM

Panel Early-Age Onset Colorectal Cancer: What's Experienced, What's Known, and What's Next?

MS

 Subar Research

Scott Kopetz MD, PhD, FACP

Cassandra Fritz MD, MPHS

Azucena (Suzy) Reyes

Suzy Reyes Early-Age Onset Colorectal Cancer Survivor

Azucena (Suzy) Reyes

Cancer Survivor

CHEMOTHERA PY #9 3/21/16

(<u>=</u>)

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity

Overview of Early-Onset Colorectal Cancer

Scott Kopetz, MD, PhD, FACP

Deputy Chair for Translational Research and Professor Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine The University of Texas MD Anderson Cancer Center

Making Cancer History®

Overview of Early-Onset Colorectal Cancer

Scott Kopetz, MD, PhD

Department of Gastrointestinal Medical Oncology MD Anderson Cancer Center

Topics

EPIDEMIOLOGY

The epidemiology of EOCRC globally and in the United States.

EXPOSOME

Exposures or risk factors potentially contributing to the rising risk of EOCRC.

GENETICS & EPIGENETICS

Molecular aspects of EOCRC.

MD Anderson

0-49 years Female Male -**US Incidence** 10 Rate per 100,000 population 8 **Incidence of EOCRC** 50% Incidence rate of EOCRC raised by more than 50% in both genders since 1994. 0 -65+ years 1995 2010 2000 2005 2016 400 **Incidence of LOCRC** Rate per 100,000 population 300 -32% Incidence rate of LOCRC declined by around 34% in both genders since 2000. 200 100 0 -1995 2010 2016 00 Siegel RL, et al. CA Cancer J Clin' 2020

MD Anderson

Global Prevalence: Europe, North America & Oceania

EOCRC incidence **increased** in 19 countries. **Nine** of which had stable or **declining** trends in older adults. Average annual per cent change (AAPC) in colorectal cancer incidence by age during the most recent 10 years of available data.

Siegel RL, et al. Gut'19

MD Anderson

EOCRC Age Distribution

EOCRC by Race/Ethnicity

Annual per cent change (APC) Bold = p < 0.05

Siegel RL, et al. CA Cancer J Clin' 2020

MD Anderson

EOCRC Subsite 40% of EOCRC cases are rectal cancer 65+ y <50 y 2% 10% Proximal 23% Distal 23% 49% Rectal Appendix 25% 37% ■ Large Intestine, NOS 19%

40% of men; 35% of women

27% of men; 20% of women

Slide from Siegel RL, 2020

EOCRC Clinical Diagnosis

Stage

Diagnosed at stage III or IV.

Diagnosis Time

Visited two physician at least before they get the diagnosis.

Family

Around 80% with young children

Diagnosis Period

Waited **six months** at least when they experienced symptoms before talking to a doctor

MD Anderson

AGENDA

EPIDEMIOLOGY

The epidemiology of EOCRC globally and in the United States.

EXPOSOME

Exposures or risk factors potentially contributing to the rising risk of EOCRC.

GENETICS & EPIGENETICS

Molecular aspects of EOCRC

CONCLUSION

Remarks and recommendations

MD Anderson

Specific External Environment

Etiological factors	Level of evidence	Unit increase	RR (95% CI)	Temporal trend	
Obesity	++	5 kg/m ² in BMI	1.05 (1.03-1.07)	1	
Western dietary pattern	++	Highest vs lowest	1.12 (1.01-1.24)	Poorest in 2000s then stable	
Processed meat	++	50 g per day	1.16 (1.08-1.26)	\Leftrightarrow	
Alcohol (as ethanol)	++	10 g per day	1.07 (1.05-1.09)	Peak in 1980s then I	
Red meat	+	100 g per day	1.12 (1.00-1.25)	Peak in 1970s then 🌷	
Diabetes	+	Yes vs no	1.30 (1.20-1.40)	†	
Smoking	+	Current vs never	1.15 (1.00-1.32)	1	
Total physical activity		5 MET - hours per week	0.97 (0.94-0.99)	\Leftrightarrow	
Aspirin		75-1200 mg per day	0.76 (0.63-0.94)	1	
Total fiber	-	10 g per day	0.93 (0.87-1.00)	Ť	
Whole grain		90 g per day	0.83 (0.79-0.89)	1	
Total calcium	-	300 mg per day	0.92 (0.89-0.95)	1	

Keum et al, Nature Reviews Gastro, 2019; Daniel et al, Public Health Nutr, 2011; Menke et al, JAMA, 2015; Larson et al, JNCI, 2005; Albertson et al, Nutr J., 2016; Labarthe et al, Circulation 1996; Gahche et al, NCHS Data Brief, 2011

MD Anderson

Microbiome

Early-life exposures

- Mode of nutritional provision
- Breastfeeding
- Diet formula
- Pre-probiotic supplement

Mode of delivery

Caesarean

Vaginal

Environment

• Psychological and/or physical stress Family environment and pets

Infancy

Genetics

Antibiotics

- 2.7 courses by age 2 years
- 10.9 courses by age 10 years Maternal infection, disease
- and/or medication
- Maternal nutrition
- Maternal stress

Molecular Features: MD Anderson + AACR GENIE + Foundation Medicine

	MDACC Molecular Cohort	MDACC Tumor Registry Cohort	AACR Project GENIE Cohort	CMS Cohort
Patient Information	 N=1877 Seen at MDACC from January 1, 2012 to September 1, 2016 	 N=32507 Seen at MDACC from January 1, 1980 to present 	 N=1868 Excluded patients from MDACC to prevent duplication of data 	 Total N=626 N=448 from TCGA N=178 from MDACC
Clinical Data	 Baseline clinical and pathologic characteristics 	 Baseline clinical and pathologic characteristics 	 Limited clinical and pathologic characteristics 	 Limited clinical and pathologic characteristics
Molecular Data	 Mutational data available from 46- or 50-gene CLIA next- generation sequencing panel 	• Unavailable	 Mutation data available from AACR Project GENIE database, which includes a mixture of next-generation sequencing platforms 	 RNA expression data. For TCGA patients, data were publicly available. For MDACC patients, data were obtained with Affymetrix RNA expression arrays.
Cancer Stage(s)	Stage IV	Stages I-IV	Majority stage IV	Stages I-IV
Additional Data	 Comorbid predisposing condition information available for patients < 50 years 			Classification by CMS subtype

Foundation Medicine

18,218 total patients

- 1,420 patients under the age of 40
- 3,248 between 40 and 49
- 13,550 age 50 and older

No significant difference in KRAS, NRAS mutations

Willauer et al Cancer '19, Lieu CCR '19

Foundation One molecular testing

Table 1. Significant alterations and alterations in genes of interest between cohorts using false discovery rate (FDR) in MSS colorectal cancer (CRC) and MSI-H colorectal cancer

Alteration rates in the MSS cohort						
	Rate observed in under	Rate observed in 50 and				
Gene	40 group (%)	over group (%)	FDR			
TP53	82.3	76.7	1.56E-05			
APC	65.8	79.7	4.84E-26			
KRAS	45.6	52.4	1.56E-05			
PIK3CA	14.1	17.5	0.002959601			
CTNNB1	4	2.7	0.013488987			
BRAF	5.2	7.7	0.002067048			
FAM123B	2	6.8	1.35E-12			
NRAS	3.7	4.6	0.171847712			

Consensus Molecular Subtypes Differences: Higher CMS1

TABLE 1. Baseline Characteristics of the MDACC Molecular Cohort Classified by Age

	Age						
Characteristic	18-29 y	30-39 y	40-49 y	50-59 y	60-69 y	≥70 y	Р
Patients, No. (%)	46 (2)	177 (9)	411 (22)	605 (32)	454 (24)	184 (10)	
MSI-H (n = 1525, 81% known), No. (%)	3 (7)	12 <mark>(</mark> 8)	23 (3)	11 (2)	13 (4)	6 (4)	.038
	5(1)	12 (0)	20 (0)	(2)	10 (4)	S (4)	-

High CMS1 despite low rates of MSI-H

Willauer et al Cancer '19

MD Anderson

Overall survival and progression-free survival from diagnosis of mCRC is worse for EOCRC patients

20,003 patients from 24 first line studies of mCRC (ARCAD database)

Are we overtreating Young Adults with Colon Cancer?

More intense treatments with unmatched survival gains

Table 2. Likelihood of Receiving Postoperative Systemic Chemotherapy and Multiagent Regimens for Young Adults (Ages 18-49 Years at Diagnosis) vs Older Adults (Ages 65-75 Years at Diagnosis) With Colon Cancers^a

Patients Who Received Chemotherapy	Any Chemotherapy, No. (%)	Odds Ratio for Receiving Chemotherapy (95% CI)	Multiagent Regimens, No. (%)	Odds Ratio for Receiving Multiagent Regimen (95% CI)
Stage I	\frown			
Ages 65-75 y (n = 8991)	162 (1.8)	1 [Reference]	52 (43.0)	1 [Reference]
Ages 18-49 y (n = 1926)	109 (5.7)	2.88 (2.21-3.77)	43 (48.3)	1.38 (0.71-2.68)
Stage II Overall				
Ages 65-75 y (n = 11011)	2748 (25.0)	1 [Reference]	773 (41.7)	1 [Reference]
Ages 18-49 y (n = 3083)	1732 (56.2)	3.93 (3.58-4.31)	670 (54.9)	1.71 (1.48-1.97)
Stage II Low Risk	\frown			
Ages 65-75 y (n = 4822)	923 (19.1)	1 [Reference]	313 (39.6)	1 [Reference]
Ages 18-49 y (n = 1636)	826 (50.5)	4.22 (3.70-4.81)	388 (52.5)	1.67 (1.34-2.09)

What We Need to Do?

01

Etiology

unknown to the majority of ~ 80%

02

Risk Factor

No known major risk factor

03 Mechanism

No known differences in driver mechanisms

04

Evolution

Unknown in EOCRC

Multi-omics

Conclusion

- Early onset CRC is associated with unique clinical features and presentation
- Epidemiology suggests that this is not limited to US population, and that the impacts are across a diverse racial/ethnic groups.
- This rising incidence is in contrast to the gains being made in CRC prevention of screening age population
- Multiple etiologies have been proposed, but not yet clearly defined
- Molecular features are modestly different at the transcriptomic and mutational level, but do not provide clear clues yet
- Outcomes with treatment also vary, and yet overtreatment is a risk. Alignment of the treatments with the disease biology is needed

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity

Early-Onset Colorectal Cancer: Earlier Detection & Pathways to Prevention

Cassandra Fritz, MD, MPHS Assistant Professor of Medicine Division of Gastroenterology Washington University School of Medicine in St. Louis

Early-Onset Colorectal Cancer: Earlier Detection & Pathways to Prevention

Cassandra D.L Fritz, MD, MPHS Assistant Professor of Medicine Washington University in St. Louis

> Department of Medicine Division of Gastroenterology

No Financial Disclosures

Washington University in St.Louis • School of Medicine

Outline

- Pathway to detection of early-onset colorectal cancer
- Signs and symptoms & Diagnostic intervals
- Opportunities for improvement
- Primary prevention

Washington University in St.Louis • School of Medicine

5-year Relative Survival of Early-onset Colorectal Cancer (20-49 years of age) by Stage at Diagnosis SEER 13, 1992-2013

- Morbidity and mortality are significant
- High mortality with later-stage disease
- Early-onset CRC is in the top 5 ranking cancers associated with high disability-adjusted life years (DALYs)

Zaki T et al. CGH. 2023

Department of Medicine Division of Gastroenterology

Washington University in St.Louis • School of Medicine

Cheng E. et al., JAMA Network Open. 2021

Zhao J. et al., BMJ Oncology 2023

Washington University in St.Louis • School of Medicine

Signs and Symptoms of Early-Onset Colorectal Cancer

Objective: To identify signs & symptoms with early-onset CRC and report associated diagnostic intervals 3 months to 2 years before diagnosis.

Methods

- MarketScan commercial database including adults aged 18 to 49 years.
- Required at least 2 years of continuous enrollment prior to the index date (pathology diagnosis of CRC).
- Nested case-control study of 5075 incident early-onset CRC and 22378 matched controls.
- Multivariable logistic regressions
- Examined the median diagnostic intervals based on associated signs and symptoms.

Early signs/symptoms for Early-Onset CRC Claims data, nested case-control, 2005-2016

4 Red-Flag Signs and Symptoms, 3mo to 2 years prior to index date

Fritz CDL & Otegbeye et al, JNCI 2023

🐷 Washington University in St.Louis • School of Medicine

Number of Red-flag Signs/Symptoms and Risk of Early-Onset Colorectal Cancer 3-month time intervals prior to the index date Claims data, cases only, 2005-2016

Fritz CDL & Otegbeye et al, JNCI 2023

Washington University in St.Louis • School of Medicine

Duration of Signs and Symptoms in Young Adults Claims data, cases-only, 2005-2016

19% of early-onset CRC cases reported their **first** symptom > 3 months prior to diagnosis 50% of early-onset CRC

cases reported their first symptom < 3 months

Department of Medicine Division of Gastroenterology

20

9.7 (5.0 to 17.3)

Current Prevention Approach

Lowered CRC screening age to 45 years

~50% of early-onset CRC cases are diagnosed <45 years

Screening in younger individuals has had slow uptake

Ladabaum U, et al. CGH 2022

Department of Medicine Division of Gastroenterology

Davidson KW. JAMA 2021

Wolf AMD et al, CA Cancer J Clin 2018

Estimating the Screening-Eligible Population Size, Ages 45–74, at Average Risk to Develop CRC in the United States

cheno A. et al. cancer i rev Res. 2020

Department of Medicine Division of Gastroenterology

Do we have the resources?

Potentially, if we leverage stoolbased testing

Screening for CRC in the U.S.: Time trend by type of test

🐷 Washington University in St. Louis • School of Medicine

Screening: No difference between colonoscopy vs. FIT for additional early-onset CRC cases averted

B Benefit: Estimated No. of CRC cases averted per 1000 individuals screened^a

	Mean CF averted screenin	if start	Additional CRC cases averted if start screening at age 45 y	
Screening modality	At age	At age		
and frequency	50 y	45 y		
Stool tests				
FIT every year	47	50	3	
HSgFOBT every year ^{c,d}	39	42	3	
sDNA-FIT every year	54	57	3	
sDNA-FIT every 3 y ^d	44	47	3	
Direct visualization tests				
COL every 10 y	58	61	3	
CT colonography every 5 y	53	55	2	
Flexible SIG every 5 y	49	51	2	
Flexible SIG every 10 y plus FIT every year	54	57	3	

Knudsen AB. JAMA. 2021

Department of Medicine Division of Gastroenterology

Opportunity to leverage FIT for diagnostic pathways?

• Likely yes but we don't have the data for early-onset CRC population

Monahan KJ et al., Gut 2022

Department of Medicine Division of Gastroenterology

Department of Medicine Division of Gastroenterology

Methods: Study population

Nurses' Health Study II (NHSII): N=116,429 | age 25-42 in 1989

- - - - -

600

NSAID/aspirin every two years .

Lower endoscopy every two years

A sub-cohort of 32,058 women in NHS II with a lower endoscopy before age 50 between 1991-2015

 Excluded patients with CRC, inflammatory bowel disease, or missing medication info.

Regular use (2+times/week) of aspirin or NSAIDs and risk of early-onset adenoma, NHSII, 1991-2015

		No Regular Use (n=27795)	Regular Use (n=18732)		Multivariable OR (95% CI)	P het.	
	Adenoma	777	470		0.84 (0.75-0.95)		
Malignant	High-risk	185	105		0.77 (0.60-0.98)		
potential	Low-risk	401	245		0.83 (0.70-0.98)	0.50	
	Villous	157	76		0.67 (0.51-0.89)		
Histology	Tubular	620	394		0.89 (0.78-1.01)	0.06	
	Large	120	80		- 0.93 (0.69-1.24)		
Size	Small	455	269		0.80 (0.68-0.93)	0.51	
				r		I	
				0.5 1	2		

DO NOT POST

Fritz et al., unpublished

Washington University in St.Louis • School of Medicine

Regular use (2+times/week) of aspirin or NSAIDs and risk of early-onset adenoma, NHSII, 1991-2015 First endoscopy

Washington University in St.Louis • School of Medicine

Chemoprevention for early-onset CRC

Regular aspirin/NSAID use (2+ times/week) was associated with a lower risk of early-onset adenomas, especially those with advanced histology

Evaluate aspirin/NSAIDs as promising agents for chemoprevention of early-onset CRC

- Gender, racial/ethnic diversity
- Dose and duration for young adults
- Precision-based strategies

Washington University in St.Louis • School of Medicine

Moving the needle on early-onset CRC

- Increased inclusion of minority populations into research and dissemination and implementation strategies
- Consider risk prediction models that incorporate family history, social vulnerability, risk factors, and genetics
- Change the conversation
 - Increase awareness of early-onset CRC & associated signs and symptoms
 - Targeting resources
 - System-level and population-level interventions

Conclusions

🐷 Washington University in St.Louis • School of Medicine

Washington University in St.Louis • School of Medicine

Yin Cao email: yin.cao@wustl.edu Twitter: @yincaoScD

Washington University in St. Louis **BJC** HealthCare SCHOOL OF MEDICINE

Acknowledgements

Center for Administrative Data Research, Washington University

Participants, Staff, and CRC investigators of NHSII

Funding support:

UL1 TR002345 U01 CA176726 R37 CA246175 T32 DK007130 T32 CA009621

P30 DK052574- WashU DDRCC

Washington University in St.Louis • School of Medicine

NATIONAL CANCER **NSTITUTE**

Contact cfritz@wustl.edu

@cfritzMD

Thank You

nccrt.org @NCCRTnews #80inEveryCommunity

Table Talk Questions

- 1. What can our organizations do to take what we've learned about lead time messaging and EAO CRC signs and symptoms to make an impact in our communities?
- 2. What are some success stories from organizations that have specifically targeted EAO CRC awareness and processes that lead to timely diagnosis?